Accelerating ray tracing of full bifacial systems
In our new paper, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90% and validate our results with experimental data. We analyse the impact of the surrounding ground surface area and time-dependent ground reflection via calibrated unit systems. Overall, this work provides a basis for fast and accurate predictions of the annual energy input of real bifacial tracking PV systems. In turn this can lead to better system yield projections and contribute to lower risk for solar farm developers.
Recent Publications

Accelerating ray tracing of real bifacial systems
Dec 24, 2021
|Bifacial photovoltaic solar panels convert light into electricity from both sides and are expected to dominate the market within a decade. Bifacial solar farm developers need accurate models of energy inputs, notably of rear illumination, to estimate annual energy yield and make accurate economic projections. Ray-tracing is the most suitable technique to simulate the complex optical interactions in single axis tracking bifacial PV farms but is computationally expensive. In this work, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90% and validate our results with experimental data. We analyse the impact of the surrounding ground surface area and time-dependent ground reflection via calibrated unit systems. Overall, this work provides a basis for fast and accurate predictions of the annual energy input of real bifacial tracking PV systems. In turn this can lead to better system yield projections and contribute to lower risk for solar farm developers.

Solar module yield gains from structured ribbons
Feb 25, 2021
|We compare the effects of planar & triangular ribbons, light redirecting films, wires and a new proposed pentagonal ribbon geometry, in fixed optimal inclination, building-integrated (façade), and single-axis tracking installation scenarios of modules in portrait and landscape orientation. We conclude that to fully evaluate the effectiveness of a specific ribbon design, the annual energy yield must consider the angular irradiance distribution and weather conditions at a specific location, the installation scenario, and the module orientation.

Laser contacts from POx/Al2O3 passivation stacks
Aug 20, 2020
|• n+ laser doping demonstrated from POx/Al2O3 passivation stacks on silicon. • Metallised J0 of 540 fA cm−2 for n+ laser-doped region with Rsheet of 39.5 Ω/□. • Consistent with values for POCl3 furnace diffusions, indicating minimal defects. • Same POx/Al2O3 stack provides J0 of 2.5 fA cm−2 on undiffused planar surfaces. • 23.6% simulated efficiency for laser-doped n-type PERL cell based on POx/Al2O3.
One-Minute Typical Meteorological Year Data for Australia - Corresponding data can be downloaded here for free.
My Projects

Multifunctional Dielectric Layers
Research

Cell-to-Module Yield CTMY
Research

One Minute TMY Data Australia
Software

Student and Collaboration Opportunities
Education

SunCalculator
Software

Photovoltaic Power Plants
Education